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The double lambda system: a new workhorse
for quantum optics?

B y J. H. Eberly

Department of Physics and Astronomy
and

Rochester Theory Center for Optical Science and Engineering,
University of Rochester, Rochester, NY 14627, USA

We review the status of the double-lambda system of cavity QED and mention unex-
pected recent applications in which deterministic and unitary control of quantum
states is exploited.

The double-lambda system provides an attractive stripped-down quantum framework
for modeling a variety of optical processes not compatible with the better-known
Jaynes–Cummings (Jaynes & Cummings 1963) model. The main difference is the
existence of two independent channels for exciting the atom in the Λ–Λ model. We are
concerned here with the three- and four-mode Λ–Λ models, which are appropriate to
the situations shown in figure 1, in which an atom or ion either slowly drifts through
a cavity or is permanently trapped in a cavity. The figures show three radiation
modes as if they were light beams incident from outside the cavity. We will consider
situations in which at least one mode is resonant in the cavity.

The history of the double-lambda system is relatively recent. A list of contribu-
tions to quantum optics in which the double lambda, or close relatives of it, have
played an important role would include discussions of amplification without inversion
(Kocharovskaya 1990), near-resonant excitation via a classical and quantum channel
(Law & Eberly 1991), two mechanisms for inversionless amplification (Keitel et al.
1993), two-mode squeezing with phase correlation (Law & Eberly 1993), proposal
for GHZ state generation (Wodkiewicz et al. 1993), LWI (Fleischhauer et al. 1994),
transparency and dressed fields in pair-photon propagation (Cerboneschi & Arimon-
do 1995), a photon ‘engine’ for generating an arbitrary single-mode photon state
(Law & Eberly 1996), quantum mechanical image processing (Kneer & Law 1996)
and a photon ‘pistol’ (Law & Kimble 1997).

We begin with a summary of the benefits attached to the most popular ‘workhorse’
of cavity QED, namely the Jaynes–Cummings system. These characteristics will be
familiar to most workers in quantum optics.

(a) The Hamiltonian and the atom–field interaction are easily recognized as arising
from first principles of QED.

(b) Exact solutions for time evolution of the interacting atom–field system are
available without using perturbation theory or semiclassical decorrelations.

(c) Empirical linewidths and damping rates are not present, and there are no
vanishing denominators at exact resonance.

(d) There are no runaway features of the time-dependences and no divergences.
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Figure 1. Three radiation fields are shown directed at an atom in a cavity or in a trap, which
could be located in a cavity too. The cavity could support excitation of a fourth mode. The
double-lambda model is compatible with three- or four-mode interactions.

Figure 2. Two atom models that permit cyclic operation are shown. Both models can employ
two ‘pump’ modes P and P′ that are different from each other, if necessary.

(e) Exact analytic solutions are easily written for both the eigenvalues and the
dressed eigenstates of the fully interacting Hamiltonian.

With the Jaynes–Cummings system, there are many applications and dynamical
consequences, some without classical analogues. One can think of the collapse and
revival effects, production of entangled atom–field states, micromaser operation, nov-
el methods to produce Fock states, squeezed states and sub-Poisson states, vacuum
Rabi oscillations, etc. All in all, the model is a handy toy in which to examine funda-
mental aspects of both optical spectroscopy and laser action, with the major advan-
tage that topics of current experimental interest can be treated in detail. Among
these are several that have been already mentioned in this Discussion Meeting, par-
ticularly involving situations in which just one atom is sufficient to represent a very
dense gas to the field, and in which just one photon can represent a very intense field
to the atom.

It is not difficult to draw up an equally long unfulfilled ‘wish list’ of effects and
processes that are well known in optical physics, but ones that don’t fit into the
Jaynes–Cummings framework. This list would include: (a) pump-probe spectroscopy;
(b) nonlinear wave mixing, including down conversion; (c) three-mode correlations
of the GHZ type; (d) two-photon lasing; and (e) optical pumping of laser action.

Two generic examples of atom–field models that are able to provide some or all of
these effects and processes are shown in figure 2. Note that both employ radiation
modes in such a way that there are two independent channels connecting the states
|+〉 and |−〉.

It is possible for the atom in figure 2 to act catalytically as a mode-converter
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Figure 3. The form of the Hamiltonian matrices of the Jaynes–Cummings model (left) and the
double-lambda model (right), taking account of all off-diagonal ‘dressing’ interactions included
in equation (1.1).

in both cases by operating unidirectionally around a ‘cycle’. Consider the double-
lambda case, of direct concern below. The absorption of a pump photon (labelled P)
and the accompanying emission of a Stokes (S) photon, followed by the absorption of
a second pump photon and then the emission of an anti-Stokes (A) photon takes the
atom from state |−〉 to state |+〉 and around to |−〉 again. The atom ends where it
began, but the field inventory of photons is different. In the end there are two fewer
pump photons and one additional each of Stokes and anti-Stokes photons. The atom
has acted as a wave-mixing catalyst, and is ready to be used again. The Jaynes–
Cummings system has only a single channel connecting its two states, so J–C cyclic
operation of this kind is not possible.

For practical reasons, one must ask to what degree the more complex double-
lambda remains sufficiently ‘simple’ and ‘solvable.’ To do this we compare the two
systems’ interaction Hamiltonians,

VJ−C = g[âσ̂+− + h.c.], VΛ−Λ = g[(âPâ
+
S + â+

P âA)σ̂+− + h.c.]. (1.1)

The matrix representation of the first is extremely simple, as given in figure 3a, since
the number of ‘excitations’ is a constant (the number of photons plus the occupation
number of the upper state cannot change under VJ−C). The matrix representation
of the second is more complicated because there is another good quantum number.
The total number of photons is independent of the operator that is equivalent to the
J–C ‘excitation’ number operator, so they must both be counted. When this is done
systematically, the Λ–Λ Hamiltonian matrix appears as in figure 3b.

Of course, one knows why the Jaynes–Cummings is so simple and useful. A single
generic quadratic equation diagonalizes all of the disconnected 2× 2 matrices shown
in figure 3a. The double lambda, by contrast, also consists of disconnected matri-
ces, but matrices that get progressively bigger for larger numbers of photons in the
modes, eventually reaching arbitrarily large size. Nevertheless, procedures have been
identified (for both the three- and four-mode cases) which give the eigenvalues and
eigenfunctions for this Hamiltonian exactly and analytically in closed form†. The
key is the recognition of constants of the motion, including the ‘conversion’ operator
given by Ĉ = n̂A− n̂S + σ̂++, which is the equivalent of the J–C ‘excitation’ operator.

† The three-mode double-lambda model is diagonalized in Wang et al. (1992) and the four-mode
model in Wang & Eberly (1993).
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The equation to be solved is

VΛ−Λ|N, 2C;λ) = λ|N, 2C;λ), (1.2)

where N and C are the quantum numbers that fix the total photon number and the
conversion constant.

In the four-mode case, a straightforward application of angular momentum algebra
provides the route to the solution. In the three-mode case, the solution follows from
an expansion in bare atom–field states |p, s, a;±〉, in which the four indices count the
numbers of photons in the pump, Stokes and anti-Stokes modes and the inversion.
The cyclic action of the two-channel mode-mixing ‘engine’ underlying the three-mode
Λ–Λ model converts the eigenvalue problem into a three-term recursion relation for
the coefficients of the expansion. In the simplest case, when C = − 1

2 , we have

λ2cn = (M − n)
√

(2n+ 1)(2n+ 2)cn+1 + [2n(2M − 2n+ 1) + (M − n)]cn

+(M − n+ 1)
√

2n(2n+ 1)cn−1. (1.3)

For contrast, the equivalent Jaynes–Cummings recursion formula is simply (on res-
onance)

λ2cn = g2(n+ 1)cn. (1.4)
The Λ–Λ recursion relation implies a Riemann differential equation that has 24 pos-
sible hypergeometric solutions, but only one fits the requirement of providing a poly-
nomial of the right order. The eigenvalue formula is remarkably simple,

λ2 = 2m(m+ |C|), m = 0, 1, 2, . . . . (1.5)

Several optical effects compatible with the Λ–Λ system model were listed above,
and nonlinear wave mixing is clearly realized in the cyclic operation of the double-
lambda system. However, the most interesting applications, so far, of the Λ–Λ model
were not on the list. Since the dynamical evolution is fully deterministic and unitary,
two independent channels permit externally injected modes to deterministically con-
trol the remaining (quantized) mode. This is the basis for a photon ‘engine’ and the
invention of a ‘photon pistol.’ Only the design for the photon engine (Law & Eberly
1996) has been published so far. It has been shown that a set of external pulses,
that turn the pump-Stokes channel and the anti-Stokes-pump channel on and off
alternately, can force the cavity mode to develop from vacuum as desired. After a
finite total interaction time and a finite number of pulses, the cavity mode can be
put into whatever superpositions of Fock states that a ‘customer’ might specify. We
have described this as the basis for the first ‘practical’ non-classical photon state
factory, practical in the sense that atom–field entanglement is avoided and there is
no need to first construct an atomic state ‘template’ of the non-classical field state
desired. The procedures for quantum image processing (Kneer & Law 1996) and the
photon pistol (Law & Kimble 1997) are based on the same principles.

In summary, several interesting and unexpected applications of the strongly driven
Λ–Λ system have recently been proposed. They make use of ‘control’ features provid-
ed by the two independent channels of the model. We expect that they are the first
of a large number of applications, since both ion traps and optical microwave cavi-
ties are now providing practical experimental access to the domain of single-photon
single-atom strong interactions.
C. K. Law and A. Rahman assisted the preparation of this article. The research reported here
was supported by the US National Science Foundation.
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